Research Topics ML & DL + Bayesian Methods for Machine Training
Research Topics ML & DL + Bayesian Methods for Machine Training
Order this unique E-Learning course Research Topics ML & DL + Bayesian Methods for Machine Learning Training online, 1 year 24/7 access to rich interactive videos and tests.
Read more- Brand:
- Machine Learning
- Discounts:
-
- Buy 2 for €155,82 each and save 2%
- Buy 3 for €154,23 each and save 3%
- Buy 4 for €152,64 each and save 4%
- Buy 5 for €151,05 each and save 5%
- Buy 10 for €143,10 each and save 10%
- Buy 25 for €135,15 each and save 15%
- Buy 50 for €127,20 each and save 20%
- Availability:
- In stock
- Delivery time:
- Ordered before 5 p.m.! Start today.
- Award Winning E-learning
- Lowest price guarantee
- Personalized service by our expert team
- Pay safely online or by invoice
- Order and start within 24 hours
Research Topics ML & DL + Bayesian Methods for Machine E-Learning
Course content
Research Topics in ML and DL
Research Topics in Machine Learning and Deep Learning
Course: 42 Minutes
- Course Overview
- Prevent Neural Networks from Overfitting
- Multi-Label Learning Algorithms
- Deep Residual Learning for Image Recognition
- Transferable Features in Deep Neural Networks
- Large-Scale Video Classification
- Common Objects in Context
- Generative Adversarial Nets
- Scalable Nearest Neighbor Algorithms
- Face Alignment with Ensemble of Regression Trees
- Learning Deep Features for Scene Recognition
- Extreme Learning Machine (ELM)
- Exercise: Recognize Research Topics in ML and DL
Bayesian Methods for Machine
Bayesian Methods: Bayesian Concepts & Core Components
Course: 1 Hour, 1 Minute
- Course Overview
- Bayesian Probability and Statistical Inference
- Bayes' Theorem in Machine Learning
- Frequentist and Subjective Probability
- Probability Distribution
- Ingredients of Bayesian Statistics
- Bayesian Methods
- Bayesian Concepts in ML Modeling
- Prior Knowledge Distribution
- Bayesian Analysis Approach
- Exercise: Bayesian Statistics and Analysis
Bayesian Methods: Implementing Bayesian Model and Computation with PyMC
Course: 48 Minutes
- Course Overview
- Bayesian Learning
- Bayesian Model Types
- Probabilistic Programming
- Modeling with PyMC
- Bayesian Data Analysis Process
- Bayesian Data Analysis with PyMC
- Bayesian Computation Methods
- Markov Chain Simulation
- Implementing Markov Chain Simulation
- Finding Posterior Modes
- Exercise: Bayesian Modeling with PyMC
Bayesian Methods: Advanced Bayesian Computation Model
Course: 52 Minutes
- Course Overview
- Bayesian Model and Linear Regression
- Hierarchical Linear Model
- Probability Model
- Building Probability Models
- Non-Linear Model
- Gaussian Process
- Mixture Model
- Dirichlet Process Model
- Bayesian Modeling with PyMC
- Exercise: Implement Bayesian models
Language | English |
---|---|
Qualifications of the Instructor | Certified |
Course Format and Length | Teaching videos with subtitles, interactive elements and assignments and tests |
Lesson duration | 3:23 Hours |
Progress monitoring | Yes |
Access to Material | 365 days |
Technical Requirements | Computer or mobile device, Stable internet connections Web browsersuch as Chrome, Firefox, Safari or Edge. |
Support or Assistance | Helpdesk and online knowledge base 24/7 |
Certification | Certificate of participation in PDF format |
Price and costs | Course price at no extra cost |
Cancellation policy and money-back guarantee | We assess this on a case-by-case basis |
Award Winning E-learning | Yes |
Tip! | Provide a quiet learning environment, time and motivation, audio equipment such as headphones or speakers for audio, account information such as login details to access the e-learning platform. |
There are no reviews written yet about this product.
OEM Office Elearning Menu Genomineerd voor 'Beste Opleider van Nederland'
OEM Office Elearning Menu is trots genomineerd te zijn voor de titel 'Beste Opleider van Nederland' door Springest, een onderdeel van Archipel. Deze erkenning bevestigt onze kwaliteit en toewijding. Hartelijk dank aan al onze cursisten.
Reviews
There are no reviews written yet about this product.