Please accept cookies to help us improve this website Is this OK? Yes No More on cookies »
Item number: 150601069

Exam AI-900 Microsoft Azure AI Fundamentals

Item number: 150601069

Exam AI-900 Microsoft Azure AI Fundamentals

199,00 240,79 Incl. tax

Do you master Microsoft Azure AI Fundamentals AI-900 ? Order online and make an appointment for the Microsoft Azure AI Fundamentals AI-900

Read more
Availability:
In stock
Delivery time:
Exam date & time by appointment
  • Award Winning E-learning
  • Lowest price guarantee
  • Personalized service by our expert team
  • Pay safely online or by invoice
  • Order and start within 24 hours

Exam AI-900 Microsoft Azure AI Fundamentals

This exam is an opportunity to demonstrate knowledge of common ML and AI workloads and how to implement them on Azure. It is intended for candidates with both technical and non-technical backgrounds.

Candidates for this exam should have foundational knowledge of machine learning (ML) and artificial intelligence (AI) concepts and related Microsoft Azure services. Data science and software engineering experience are not required; however, some general programming knowledge or experience would be beneficial.

Skills measured

Audience profile

This exam is an opportunity for you to demonstrate knowledge of machine learning and AI concepts and related Microsoft Azure services. As a candidate for this exam, you should have familiarity with Exam AI-900’s self-paced or instructor-led learning material.

This exam is intended for you if you have both technical and non-technical backgrounds. Data science and software engineering experience are not required. However, you would benefit from having awareness of:

  • Basic cloud concepts

  • Client-server applications

You can use Azure AI Fundamentals to prepare for other Azure role-based certifications like Azure Data Scientist Associate or Azure AI Engineer Associate, but it’s not a prerequisite for any of them.

Skills at a glance

  • Describe Artificial Intelligence workloads and considerations (15–20%)

  • Describe fundamental principles of machine learning on Azure (20–25%)

  • Describe features of computer vision workloads on Azure (15–20%)

  • Describe features of Natural Language Processing (NLP) workloads on Azure (15–20%)

  • Describe features of generative AI workloads on Azure (15–20%)

Describe Artificial Intelligence workloads and considerations (15–20%)

Identify features of common AI workloads

  • Identify features of content moderation and personalization workloads

  • Identify computer vision workloads

  • Identify natural language processing workloads

  • Identify knowledge mining workloads

  • Identify document intelligence workloads

  • Identify features of generative AI workloads

Identify guiding principles for responsible AI

  • Describe considerations for fairness in an AI solution

  • Describe considerations for reliability and safety in an AI solution

  • Describe considerations for privacy and security in an AI solution

  • Describe considerations for inclusiveness in an AI solution

  • Describe considerations for transparency in an AI solution

  • Describe considerations for accountability in an AI solution

Describe fundamental principles of machine learning on Azure (20–25%)

Identify common machine learning techniques

  • Identify regression machine learning scenarios

  • Identify classification machine learning scenarios

  • Identify clustering machine learning scenarios

  • Identify features of deep learning techniques

Describe core machine learning concepts

  • Identify features and labels in a dataset for machine learning

  • Describe how training and validation datasets are used in machine learning

Describe Azure Machine Learning capabilities

  • Describe capabilities of automated machine learning

  • Describe data and compute services for data science and machine learning

  • Describe model management and deployment capabilities in Azure Machine Learning

Describe features of computer vision workloads on Azure (15–20%)

Identify common types of computer vision solution

  • Identify features of image classification solutions

  • Identify features of object detection solutions

  • Identify features of optical character recognition solutions

  • Identify features of facial detection and facial analysis solutions

Identify Azure tools and services for computer vision tasks

  • Describe capabilities of the Azure AI Vision service

  • Describe capabilities of the Azure AI Face detection service

Describe features of Natural Language Processing (NLP) workloads on Azure (15–20%)

Identify features of common NLP Workload Scenarios

  • Identify features and uses for key phrase extraction

  • Identify features and uses for entity recognition

  • Identify features and uses for sentiment analysis

  • Identify features and uses for language modeling

  • Identify features and uses for speech recognition and synthesis

  • Identify features and uses for translation

Identify Azure tools and services for NLP workloads

  • Describe capabilities of the Azure AI Language service

  • Describe capabilities of the Azure AI Speech service

Describe features of generative AI workloads on Azure (15–20%)

Identify features of generative AI solutions

  • Identify features of generative AI models

  • Identify common scenarios for generative AI

  • Identify responsible AI considerations for generative AI

Identify capabilities of Azure OpenAI Service

  • Describe natural language generation capabilities of Azure OpenAI Service

  • Describe code generation capabilities of Azure OpenAI Service

  • Describe image generation capabilities of Azure OpenAI Service

 

Duration 50 minutes
Location Almere
Language English
Parking Free

There are no reviews written yet about this product.

Loading...

OEM Office Elearning Menu Genomineerd voor 'Beste Opleider van Nederland'

OEM Office Elearning Menu is trots genomineerd te zijn voor de titel 'Beste Opleider van Nederland' door Springest, een onderdeel van Archipel. Deze erkenning bevestigt onze kwaliteit en toewijding. Hartelijk dank aan al onze cursisten.

Reviews

There are no reviews written yet about this product.

25.000+

Deelnemers getrained

Springest: 9.1 - Edubookers 8.9

Gemiddeld cijfer

3500+

Aantal getrainde bedrijven

20+

Jaren ervaring

Even more knowledge

Read our most recent articles

View blog