Wij slaan cookies op om onze website te verbeteren. Is dat akkoord? Ja Nee Meer over cookies »
Artikelnummer: 128303322

Data Analysis with R Training

Artikelnummer: 128303322

Data Analysis with R Training

298,00 360,58 Incl. btw

Data Analysis with R E-Learning Training Gecertificeerde docenten Quizzen Assessments test examen Live Labs Tips trucs Certificaat.

Lees meer
Merk:
R
Kortingen:
  • Koop 2 voor €292,04 per stuk en bespaar 2%
  • Koop 3 voor €289,06 per stuk en bespaar 3%
  • Koop 4 voor €286,08 per stuk en bespaar 4%
  • Koop 5 voor €283,10 per stuk en bespaar 5%
  • Koop 10 voor €268,20 per stuk en bespaar 10%
  • Koop 25 voor €253,30 per stuk en bespaar 15%
  • Koop 50 voor €238,40 per stuk en bespaar 20%
Beschikbaarheid:
Op voorraad
Levertijd:
Voor 17:00 uur besteld! Start vandaag. Gratis Verzending.
  • Award Winning E-learning
  • De laagste prijs garantie
  • Persoonlijke service van ons deskundige team
  • Betaal veilig online of op factuur
  • Bestel en start binnen 24 uur

Data Analysis with R E-Learning Training 

R-programmeertaal wordt veel gebruikt voor statistische analyse en modellering en datamining. In deze Learning Kit begin je met het verkennen van de basis van R-taal, gevolgd door het toepassen van de programmeerstructuren. Vervolgens leer je data-analyse in R door het verkennen van en werken met datasets in R en leer je zeer belangrijke statistische concepten en hoe je deze kunt toepassen tijdens het analyseren en modelleren van je gegevens in R.

Learning Kits zijn gestructureerde leertrajecten, voornamelijk op het gebied van Emerging Tech. Een leerpakket houdt de student werkt aan een algemeen doel, hen te helpen uw loopbaanambities te verwezenlijken. Elk deel leidt de student stap voor stap door een diverse reeks onderwerpen. Leerpakketten zijn:bestaande uit verplichte tracks, die alle beschikbare leermiddelen bevatten, zoals assessments (eindexamens), mentor, oefenlabs en van cursus e-learning. En alle bronnen met 365 dagen toegang vanaf de eerste activering.

Deze Learning Kit met meer dan 26 leeruren is verdeeld in drie sporen:

Cursusinhoud

Module 1: Getting Started with R Programming

In this module, the focus will be on R programming for beginners. Explore the basics of R.
Courses (6 hours +):

R Programming for Beginners: Getting Started

Course: 1 Hour, 31 Minutes

  • Course Overview
  • Installing R on macOS
  • Installing R on Windows
  • Using the ? Operator in R
  • Using help() and Creating Variables in R
  • Using Reserved Words and Assignment Operators in R
  • Using Vectors in R
  • Performing Arithmetic Operations in R
  • Creating Variables in R
  • Using the Built-in Functions of R
  • Using the Numeric Built-in Functions of R
  • Recognizing the Basic Data Types in R
  • Course Summary

R Programming for Beginners: Exploring R Vectors

Course: 1 Hour, 28 Minutes

  • Course Overview
  • Creating Basic R Vectors
  • Understanding the Finer Points of R Vectors
  • Indexing into R Vectors
  • Performing Vectorized Operations in R
  • Implementing Relational Operations on R Vectors
  • Creating R Vectors with Key-Value Pairs
  • Recycling R Vectors in Vectorized Operations
  • Filtering Data in R Vectors
  • Using any(), all(), & which() Functions on R Vectors
  • Course Summary

R Programming for Beginners: Leveraging R with Matrices, Arrays, & Lists

Course: 1 Hour, 36 Minutes

  • Course Overview
  • Creating Matrices in R
  • Naming Dimensions in R Matrices
  • Performing Math Operations on R Matrices
  • Implementing Matrix Multiplication in R
  • Combining Matrices in R
  • Performing Indexing Operations on R Matrices
  • Creating Arrays in R
  • Indexing into R Arrays
  • Using Lists in R
  • Specifying Key-Value Pairs in R Lists
  • Editing Keys and Values in R Lists
  • Exploring R Lists with Different Data Types
  • Course Summary

R Programming for Beginners: Understanding Data Frames, Factors, & Strings

Course: 1 Hour, 53 Minutes

  • Course Overview
  • Creating R Data Frames
  • Naming R Data Frame Dimensions & Viewing Statistics
  • Indexing into R Data Frames
  • Filtering Data in R Data Frames
  • Combining R Data Frames
  • Joining R Data Frames
  • Using Factors in R to Limit Variable Values
  • Creating R Data Frames with Factors
  • Using Factors with tapply() and split() in R
  • Viewing Counts Using Tables in R
  • Working with Strings in R
  • Using formatC() & sprintf() in R
  • Course Summary

Assessment:

Getting Started with R Programming

Module 2: Applying and Using R Programming Structures

In this module, the focus will be on R programming structures. Explore control flow, functions, and object systems.
Courses (4 hours +)

Using R Programming Structures: Leveraging R with Control Flow & Looping

Course: 1 Hour, 13 Minutes

  • Course Overview
  • Conditional Branching with If Statements in R
  • Using ifelse() and the Switch Statement in R
  • Iterating over Data with For Loops in R
  • Iterating over R Lists and Matrices with For Loops
  • Using Nested For Loops in R
  • Using While Loops in R
  • Using Repeat Loops in R
  • Performing Advanced Looping in R
  • Course Summary

Using R Programming Structures: Functions & Environments

Course: 1 Hour, 41 Minutes

  • Course Overview
  • Creating Custom Functions in R
  • Returning Data from Functions in R
  • Using Named Arguments in R
  • Using Default Arguments in R
  • Working with First-class Functions in R
  • Storing Functions & Using Them in Switch Statements
  • Working with R Environments
  • Creating Inner Functions in R
  • Recognizing R Functions and Environments
  • Working with Closures in R
  • Working with Replacement Functions in R
  • Course Summary

Using R Programming Structures: Object Systems

Course: 59 Minutes

  • Course Overview
  • Recognizing the print() Function & S3 Object System
  • Identifying R Function Invocations in S
  • Creating Custom Classes Using R Functions
  • Extending the print() Function for R Custom Classes
  • Using Reference Classes in R
  • Using Member Variables and Functions in R
  • Using Inheritance in Reference Classes in R
  • Course Summary

Assessment:

Applying and Using R Programming Structures

Module 3: Working with Datasets In R

In this module, the focus will be on R datasets. Explore how to load, save, and transform data as well as select, filter, join, and visualize data.
Courses (6 hours +)

Datasets in R: Loading & Saving Data

Course: 1 Hour, 44 Minutes

  • Course Overview
  • Installing R on macOS
  • Installing RStudio on macOS
  • Installing R on Windows
  • Installing RStudio on Windows
  • Running Commands Using the RStudio Console
  • Working with Panes in RStudio
  • Creating a New Project and Examining Datasets
  • Demonstrating and Visualizing Built-in Datasets
  • Browsing Package Vignettes
  • Reading from CSV Files
  • Reading from Text, XML, Excel, and JSON Files
  • Writing Data Out to Different File Formats
  • Course Summary

Datasets in R: Transforming Data

Course: 1 Hour, 59 Minutes

  • Course Overview
  • Working with an In-memory SQLite Table
  • Connecting to and Retrieving Results from SQLite
  • Updating Results with a Persistent Database
  • Dropping and Renaming Columns
  • Changing Column Data Types
  • Transforming Data Using the Transform Function
  • Transforming Data Using the Apply Function Family
  • Transforming Data Using if_else() and mutate()
  • Wide Form and Long Form: Using stack() and unstack()
  • Wide Form and Long Form: Using melt() and dcast()
  • melt() and dcast() on a Real Dataset
  • Wide Form and Long Form: Using gather() and spread()
  • Course Summary

Datasets in R: Selecting, Filtering, Ordering, & Grouping Data

Course: 1 Hour, 35 Minutes

  • Course Overview
  • Formatting Columns to Have the Right Data Type
  • Selecting Specific Rows and Columns
  • Filtering Operations on Data Frame Rows
  • Selecting and Filtering Using Packages in tidyverse
  • Using the dplyr filter() Function
  • Retrieving Samples and Top N Results
  • Specifying the Correct Data Types for Columns
  • Sorting Using Order and Arrange
  • Grouping and Aggregations on Data Frames
  • Grouping and Aggregation Using dplyr
  • Course Summary

Datasets in R: Joining & Visualizing Data

Course: 47 Minutes

  • Course Overview
  • Joining Data Frames Using merge()
  • Joining Tibbles Using Joins and Filtering Joins
  • Creating Histograms and Density Curves
  • Using Plots and Charts to Visualize Data
  • Course Summary

Assessment:

Working with Datasets in R

Module 4: Statistical Analysis and Modeling In R

In this module, the focus will be on statistical analysis and modeling in R. Explore probability distributions, statistical tests, regression analysis, clustering, and regularized models.
Courses (9 hours +)

Statistical Analysis and Modeling in R: Working with Probability Distributions

Course: 1 Hour, 38 Minutes

  • Course Overview
  • Statistical Tools for Understanding Data
  • Population and Sample Metric Comparisons
  • Characteristics of Probability Distribution Types
  • Sampling and Analyzing Uniform Distribution Data
  • Sampling and Analyzing Binomial Distribution Data
  • Computing Probabilities in Binomial Distributions
  • Sampling and Analyzing Poisson Distribution Data
  • Examining Normal and Exponential Distributions
  • Interpreting QQ Plots Using R
  • Using QQ Plots in R to Compare Datasets
  • Course Summary

Statistical Analysis and Modeling in R: Understanding & Interpreting Statistical Tests

Course: 1 Hour, 4 Minutes

  • Course Overview
  • Statistical Tools for Understanding Data
  • Population and Sample Metric Comparisons
  • Characteristics of Probability Distribution Types
  • Sampling and Analyzing Uniform Distribution Data
  • Sampling and Analyzing Binomial Distribution Data
  • Computing Probabilities in Binomial Distributions
  • Sampling and Analyzing Poisson Distribution Data
  • Examining Normal and Exponential Distributions
  • Interpreting QQ Plots Using R
  • Using QQ Plots in R to Compare Datasets
  • Course Summary

Statistical Analysis and Modeling in R: Statistical Analysis on Your Data

Course: 2 Hours, 7 Minutes

  • Course Overview
  • Identifying One-sample T-test Assumptions
  • Performing the One-sample T-test in R
  • Performing Variations of the One-sample T-test in R
  • Performing the One-sample Z-test in R
  • Identifying Assumptions of the Two-sample T-test
  • Running Two-sample T-tests for Equal Variances in R
  • Using Welch's two-sample T-test for Unequal Variance
  • Using R to Perform the Paired Samples T-test
  • Checking Paired Samples T-test Assumptions Using R
  • Performing the Wilcoxon Signed-rank Test Using R
  • Identifying Assumptions of the ANOVA Test Using R
  • Running the One-way ANOVA and Tukey HSD Tests in R
  • Running the Two-way ANOVA Test for Different Models
  • Parametric vs. Non-parametric Tests
  • Course Summary

Statistical Analysis and Modeling in R: Performing Regression Analysis

Course: 1 Hour

  • Course Overview
  • The Basic Characteristics of Machine Learning Models
  • Building and Evaluating Regression Models Using R
  • Visualizing Data Relationships Using R
  • Performing Simple Linear Regression in R
  • Performing Multiple Regression in R
  • Deriving Predictions Using Regression Models in R
  • Building Regression Models Using Cross-validation
  • Course Summary

Statistical Analysis and Modeling in R: Performing Classification

Course: 1 Hour, 37 Minutes

  • Course Overview
  • Recognizing and Evaluating Classification Models
  • Interpreting Logistic Regression Using R
  • Training and Evaluating a Logistic Regression Model
  • Building a Logistic Model in R Using all Predictors
  • Using R to Train a Model with Imbalanced Data
  • Building and Evaluating Models with R
  • Using R to Evaluate Imbalanced Data Model Types
  • Using Resampling Techniques on Imbalanced Data in R
  • Recognizing Decision Tree Models
  • Using R to Explore and Process Data
  • Visualizing Decision Trees and Performing Prediction
  • Course Summary

Statistical Analysis and Modeling in R: Performing Clustering

Course: 50 Minutes

  • Course Overview
  • Recognizing and Evaluating Clustering Models
  • Investigating and Visualizing Clustering Data in R
  • Performing K-means Clustering, Interpreting Results
  • Using R to Find the Optimal Number of Clusters
  • Using K-means Clustering on Multi-attribute Data
  • Course Summary

Statistical Analysis and Modeling in R: Building Regularized Models & Ensemble Models

Course: 1 Hour, 32 Minutes

  • Course Overview
  • Overfitting and Underfitting Machine Learning Models
  • The Bias-Variance Trade-off
  • Exploring and Understanding Data for Regression
  • Performing Ordinary Least Squares (OLS) Regression
  • Preparing Data for Regularized Regression Models
  • Performing Ridge Regression in R
  • Performing Lasso Regression in R
  • Performing ElasticNet Regression in R
  • Recognizing Ensemble Learning
  • Using R to Explore and Visualize Data
  • Performing Regression Using Decision Trees in R
  • Performing Regression Using Random Forest in R
  • Course Summary

Assessment:

Statistical Analysis and Modeling in R

Practice Lab: Data Science Using R

The Data Science Using R Lab will provide you with the necessary platform to gain hands on skills where you can practice different tasks related to MongoDB. You will cover areas like manipulating a data set using multiple dplyr verbs, adding the browser function to some R code to debug it, using xtable to output a table in LaTeX format, and creating an R Markdown file (.rmd) and rendering the output as html.

Taal Engels
Kwalificaties van de Instructeur Gecertificeerd
Cursusformaat en Lengte Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen
Lesduur 26 uur
Assesments De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training.
Online mentor U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking Ja
Toegang tot Materiaal 365 dagen
Technische Vereisten Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge.
Support of Ondersteuning Helpdesk en online kennisbank 24/7
Certificering Certificaat van deelname in PDF formaat
Prijs en Kosten Cursusprijs zonder extra kosten
Annuleringsbeleid en Geld-Terug-Garantie Wij beoordelen dit per situatie
Award Winning E-learning Ja
Tip! Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform.

Er zijn nog geen reviews geschreven over dit product.

Loading...

OEM Office Elearning Menu Genomineerd voor 'Beste Opleider van Nederland'

OEM Office Elearning Menu is trots genomineerd te zijn voor de titel 'Beste Opleider van Nederland' door Springest, een onderdeel van Archipel. Deze erkenning bevestigt onze kwaliteit en toewijding. Hartelijk dank aan al onze cursisten.

Beoordelingen

Er zijn nog geen reviews geschreven over dit product.

25.000+

Deelnemers getrained

Springest: 9.1 - Edubookers 8.9

Gemiddeld cijfer

3500+

Aantal getrainde bedrijven

20+

Jaren ervaring

Nóg meer kennis

Lees onze meest recente blogartikelen

Bekijk alles