Natural Language Processing (NLP) Training
Natural Language Processing (NLP) Training
Natural Language Processing (NLP) E-Learning Training Gecertificeerde docenten Quizzen Assessments Tips trucs en Certificaat.
Lees meer- Kortingen:
-
- Koop 2 voor €194,04 per stuk en bespaar 2%
- Koop 3 voor €192,06 per stuk en bespaar 3%
- Koop 4 voor €190,08 per stuk en bespaar 4%
- Koop 5 voor €188,10 per stuk en bespaar 5%
- Koop 10 voor €178,20 per stuk en bespaar 10%
- Koop 25 voor €168,30 per stuk en bespaar 15%
- Koop 50 voor €158,40 per stuk en bespaar 20%
- Beschikbaarheid:
- Op voorraad
- Levertijd:
- Voor 17:00 uur besteld! Start vandaag. Gratis Verzending.
- Award Winning E-learning
- De laagste prijs garantie
- Persoonlijke service van ons deskundige team
- Betaal veilig online of op factuur
- Bestel en start binnen 24 uur
Natural Language Processing (NLP) E-Learning Training
Natural Language Processing Proficiency reis ontvouwt de fundamenten, concepten en ontwikkelingen van Deep Learning en Neurale Netwerken gebruikt op het gebied van Natuurlijke Taalverwerking op een zodanige wijze dat de leerlingen een uitgebreid begrip van de verschillende neurale netwerk architecturen gebruikt voor Taalverwerking taken, hun verschillen, uitdagingen, en zou in staat zijn om gemakkelijk toe te passen deze leerstof in hun ontwikkeling werk / onderzoek. Deze reis helpt de leerling bekwaam te worden in het bouwen en trainen van verschillende neurale netwerken voor het verwerken van linguïstische informatie, waaronder tekstanalyse, tekstverwerking, sentimentanalyse, taalvertalingen, tekstsamenvattingen, en verschillende andere taken met behulp van populaire frameworks en ze in te zetten in de cloud en hun prestaties af te stemmen.
Deze LearningKit met meer dan 22 leeruren is verdeeld in drie sporen:
Cursusinhoud
Track 1: Getting Started with Natural Language Processing
In this track, the focus will be on fundamentals of NLP, and text mining and analytics.
Courses (8 hours +):
Natural Language Processing: Getting Started with NLP
Course: 40 Minutes
- Course Overview
- What is Natural Language Processing (NLP)
- Building Blocks of Language
- Syntactic and Semantic Analysis
- Various Tasks of NLP
- Heuristics-based NLP
- Machine Learning-based NLP
- Deep Learning-based NLP
- Challenges with NLP
- Tool Ecosystem of NLP
- NLP Use Cases in Industry
- Course Summary
Natural Language Processing: Linguistic Features Using NLTK & spaCy
Course: 1 Hour, 11 Minutes
- Course Overview
- Linguistic Features in Language Processing
- Introduction to Natural Language Toolkit (NLTK)
- Introduction to spaCy
- spaCy verses NLTK
- Using Linguistic Features in NLTK - Part 1
- Using Linguistic Features in NLTK - Part 2
- Types of spaCy Models3
- Using Linguistic Features in spaCy - Part 1
- Using Linguistic Features in spaCy - Part 2
- Using Linguistic Features in spaCy - Part 3
- Using Linguistic Features in spaCy - Part 4
- Course Summary
Text Mining and Analytics: Pattern Matching & Information Extraction
Course: 1 Hour, 52 Minutes
- Course Overview
- A Heuristic Approach to NLP
- WordNet Fundamentals
- Performing Synonyms, Synset, and WordNet Hierarchy
- Performing WordNet Relations and Semantic Similarity
- Working with SentiWordNet and Sentiment Analysis
- Working with Regex for Pattern Matching
- Investigating Python Regex Language
- Performing Basic NLTK Chunking and Regex
- Performing Advanced NLTK Chunking and Regex
- Modeling Movie Plot Sentiment Analysis with WordNet
- Course Summary
Text Mining and Analytics: Machine Learning for Natural Language Processing
Course: 2 Hours, 3 Minutes
- Course Overview
- NLP with Machine Learning (ML)
- Machine Learning Pipeline for NLP
- Feature Engineering for NLP
- Common ML Models Used in NLP
- Predicting Sarcasm in Text: Data Loading
- Predicting Sarcasm in Text: Data Analysis
- Predicting Sarcasm in Text: Linguistic Features
- Predicting Sarcasm in Text: Feature Engineering
- Predicting Sarcasm in Text: Model Building Part 1
- Predicting Sarcasm in Text: Model Building Part 2
- Predicting Sarcasm in Text: Model Tuning
- Course Summary
Text Mining and Analytics: Natural Language Processing Libraries
Course: 1 Hour, 59 Minutes
- Course Overview
- Introduction to Polyglot and TextBlob
- Introduction to Gensim and CoreNLP
- Using Basic Polyglot Features
- Using Multi-language Part of Speech Tagging
- Exploring Advanced PolyGlot Features
- Implementing Basic TextBlob Features
- Implementing Advanced TextBlob Features
- Exploring Basic Gensim Features
- Building bigram and trigram Using Gensim
- Building an LDA Model for Topic Modeling
- Exploring Advanced Gensim Features
- Course Summary
Text Mining and Analytics: Hotel Reviews Sentiment Analysis
Course: 1 Hour, 8 Minutes
- Course Overview
- Loading Hotel Reviews Data
- Installing Libraries and Data Loading
- Utilizing Exploratory Data Analysis (EDA)
- Exploring Linguistic Features of Data
- Building NLP Models
- Interpreting Model Tuning
- Deploying AutoML, PyCaret, and Streamlit Models
- NLP Project Best Practices
- NLP Project Challenges and Deployment Strategies
- Course Summary
Track 2: Natural Language Processing with Deep Learning
In this track, the focus will be on deep learning for NLP.
Courses (9 hours +)
Deep Learning for NLP: Introduction
Course: 1 Hour, 18 Minutes
- Course Overview
- NLP with Deep Learning
- NLP Use Cases in Deep Learning
- Basic Deep Learning Frameworks
- Intermediate Deep Learning Frameworks
- Advanced Deep Learning Frameworks
- Introduction to Sentiment Data
- Using Deep Learning Pipelines for Sentiment Data
- Sentiment Analysis - Overview & Data
- Sentiment Analysis - EDA
- Sentiment Analysis - Pre-processing
- Sentiment Analysis - Modeling & Evaluation
- Sentiment Analysis - Creating Accuracy & Loss Graphs
- Course Summary
Deep Learning for NLP: Neural Network Architectures
Course: 2 Hours, 30 Minutes
- Course Overview
- Basic Architecture of a Neural Network
- Multilayer Perceptron (MLP)
- Recurrent Neural Network (RNN) Architecture
- Challenges in RNN
- Applications of Neural Network-based Architecture
- Introducing the Product Reviews Data
- Loading Product Reviews Data into Google Colaboratory
- Understanding Product Reviews Data
- Exploring Product Reviews Data
- Pre-processing Product Reviews Data
- Applying Feature Engineering - Word Representation
- Creating Vector Representations Using Word2vec
- Averaging Feature Vectors
- Creating Word Embeddings with Word2Vec
- Constructing a RNN Model with Word2vec Embeddings
- Using GloVe Vectors
- Product Reviews Classification Using RNN
- Course Summary
Deep Learning for NLP: Memory-based Networks
Course: 1 Hour, 27 Minutes
- Course Overview
- Introduction to Memory-based Networks
- Gated Recurrent Unit (GRU) Architecture
- Long Short-term Memory (LSTM) Architecture
- Fall of RNN versus Rise of LSTM
- Variants of LSTM networks
- Product Review Data Preparation for Modeling
- Product Review Data Classification Using GRU
- Product Review Data Classification Using LSTM
- Product Review Data Classification Using Bi-LSTM
- Result Comparison between RNN, GRU, and LSTM
- Course Summary
Deep Learning for NLP: Transfer Learning
Course: 2 Hours, 10 Minutes
- Course Overview
- Introduction to Transfer Learning
- Advantages and Challenges of Transfer Learning
- Role of Language Modeling in Transfer Learning
- Introduction to Basic Transfer Learning Models
- Intermediate Transfer Learning Models
- Advance Transfer Learning Models
- Building ELMo Embedding Layer for Reviews
- Creating ELMo an Model for Product Reviews
- Classifying Product Reviews Using ELMo
- Reshaping Data for the ELMo Embedding Layer
- Building a Language Model Using ULMFiT
- Implementing the Language Model Using ULMFiT
- Classifying Product Reviews Using ULMFIT & FastText
- Performing Result Comparison
- Course Summary
Deep Learning for NLP: GitHub Bug Prediction Analysis
Course: 1 Hour, 56 Minutes
- Course Overview
- Case Study: Introduction to GitHub Bug Prediction
- Case Study: Loading Data & Libraries
- Case Study: Understanding the Data
- Case Study: Basic Exploratory Data Analysis
- Case Study: Punctuation & Stop Word Analysis
- Case study: Advanced Data Preprocessing
- Case Study: Data Cleaning
- Case Study: Exploring Vectorization
- Case Study: Exploring Embeddings
- Case Study: Applying Deep Learning Modeling
- Case Study: Performing Model Comparison
- Course Summary
Track 3: Advanced NLP
In this track, the focus will be on transformer models, BERT, and GPT.
Courses (4 hours +)
Advanced NLP: Introduction to Transformer Models
Course: 41 Minutes
- Course Overview
- Sequence-to-Sequence (Seq2Seq) Models
- Attention in Seq2Seq Models
- Transformer Architecture
- Self-Attention Layer in Transformer Architecture
- Multi-head Attention in Transformer Architecture
- Transformer Encoder Block
- Transformer Decoder Block
- Transformer Model Architecture
- Industry Use Cases for Transformer Models
- Transformer Model Challenges
- Course Summary
Advanced NLP: Introduction to BERT
Course: 1 Hour, 14 Minutes
- Course Overview
- BERT Architecture
- Types of BERT Models
- Transfer Learning with BERT
- The Hugging Face Ecosystem
- Practicing Model Setup & Data Exploration with BERT
- Pre-processing Data with BERT
- Using BERT for Sentiment Classification Training
- Evaluating Models with BERT
- Best Practices for BERT
- BERT Challenges and Deployment Strategy
- Course Summary
Advanced NLP: Introduction to GPT
Course: 1 Hour, 10 Minutes
- Course Overview
- Language Models
- Generative Pre-trained Transformer (GPT)
- GPT Versions
- GPT-3 Model Architecture
- GPT-3 Few-Shot Learning
- GPT-3 Use Cases and Challenges
- Downloading the GPT Model
- Performing Greedy and Beam Searches in GPT
- Performing Top K and Top P Sampling in GPT
- Using Benchmark Prompts in GPT
- Course Summary
Advanced NLP: Language Translation Using Transformer Model
Course: 1 Hour, 29 Minutes
- Course Overview
- Machine Translation
- Using Single Sentence English to French Translation
- Setting up the Environment for Translation
- Performing EDA for Translation
- Using Tokens and Vectors for Translation
- Using Training and Validation Data for Translation
- Using Transformer Encoder for Translation
- Using Transformer Decoder for Translation
- Defining Attention and Embedding for Translation
- Assembling and Training the Model for Translation
- Using a Trained Model for Translation
- Course Summary
Track 4: NLP Case Studies
In this track, the focus will be on NLP case studies.
Courses (1 hours +)
NLP Case Studies: News Scraping Translation & Summarization
Course: 43 Minutes
- Course Overview
- Text Summarization Application
- Using Data Scraping
- Performing Translation into English
- Performing Text Summarization
- Creating a User Interface (UI) with Gradio
- Course Summary
NLP Case Studies: Article Text Comprehension & Question Answering
Course: 29 Minutes
- Course Overview
- The Q&A Pipeline and Text Comprehension
- Installing PyTorch and Transformers Libraries
- Importing a Text Comprehension Model
- Using a Text Comprehension Model
- Developing a Text Comprehension App Using Gradio
- Course Summary
Assessment:
Final Exam: Natural Language Processing will test your knowledge and application of the topics presented throughout the Skillsoft Aspire Natural Language Processing Journey.
Taal | Engels |
---|---|
Kwalificaties van de Instructeur | Gecertificeerd |
Cursusformaat en Lengte | Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen |
Lesduur | 22 uur |
Assesments | De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering. |
Online Virtuele labs | Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training. |
Online mentor | U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit. |
Voortgangsbewaking | Ja |
Toegang tot Materiaal | 365 dagen |
Technische Vereisten | Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge. |
Support of Ondersteuning | Helpdesk en online kennisbank 24/7 |
Certificering | Certificaat van deelname in PDF formaat |
Prijs en Kosten | Cursusprijs zonder extra kosten |
Annuleringsbeleid en Geld-Terug-Garantie | Wij beoordelen dit per situatie |
Award Winning E-learning | Ja |
Tip! | Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform. |
Er zijn nog geen reviews geschreven over dit product.
OEM Office Elearning Menu Genomineerd voor 'Beste Opleider van Nederland'
OEM Office Elearning Menu is trots genomineerd te zijn voor de titel 'Beste Opleider van Nederland' door Springest, een onderdeel van Archipel. Deze erkenning bevestigt onze kwaliteit en toewijding. Hartelijk dank aan al onze cursisten.
Beoordelingen
Er zijn nog geen reviews geschreven over dit product.