Machine Learning with No-Code/Low-Code Training
Machine Learning with No-Code/Low-Code Training
Machine Learning with No-Code/Low-Code E-Learning Training Gecertificeerde docenten Quizzen Assessments Tips trucs en Certificaat.
Lees meer- Kortingen:
-
- Koop 2 voor €194,04 per stuk en bespaar 2%
- Koop 3 voor €192,06 per stuk en bespaar 3%
- Koop 4 voor €190,08 per stuk en bespaar 4%
- Koop 5 voor €188,10 per stuk en bespaar 5%
- Koop 10 voor €178,20 per stuk en bespaar 10%
- Koop 25 voor €168,30 per stuk en bespaar 15%
- Koop 50 voor €158,40 per stuk en bespaar 20%
- Beschikbaarheid:
- Op voorraad
- Levertijd:
- Voor 17:00 uur besteld! Start vandaag. Gratis Verzending.
- Award Winning E-learning
- De laagste prijs garantie
- Persoonlijke service van ons deskundige team
- Betaal veilig online of op factuur
- Bestel en start binnen 24 uur
Machine Learning with No-Code/Low-Code E-Learning Training
No-code en low-code Machine Learning zijn populaire opties omdat ze geen codering of minimale coderingservaring vereisen. ervaring. In deze No/Low Code Machine LearningKit verkent u verschillende no-code of low-code Machine Learning-platforms zoals KNIME, RapidMiner en BigQuery ML.
Deze Learning Kit met meer dan 20:13 leeruren is verdeeld in drie sporen:
Cursusinhoud
Track 1: Low-code Machine Learning with KNIME
In this track, the focus will be on low-code with KNIME. KNIME is a free, open-source data
analytics, reporting and integration platform. KNIME integrates various components for machine
learning and data mining through its modular data pipelining "Building Blocks of Analytics"
concept.
Courses:
Low-code ML with KNIME: Getting Started with the KNIME Analytics Platform
Course: 45 Minutes
- Course Overview
- Features of KNIME
- Machine Learning
- Viewing Sample Workflows in KNIME Community Hub
- Installing KNIME for Windows and Mac
- Opening a Sample Workflow from the KNIME Workspace
- Course Summary
Low-code ML with KNIME: Building Regression Models
Course: 1 Hour, 36 Minutes
- Course Overview
- Features of KNIME
- Machine Learning
- Viewing Sample Workflows in KNIME Community Hub
- Installing KNIME for Windows and Mac
- Opening a Sample Workflow from the KNIME Workspace
- Course Summary
Low-code ML with KNIME: Building Classification Models
Course: 2 Hours, 5 Minutes
- Course Overview
- Classification Models
- Reading and Exploring the Classification Dataset
- Removing Missing Values and Duplicate Data
- Detecting and Removing Outliers
- Removing Correlated Variables
- Converting Categorical Data to Numeric Values
- Preparing and Partitioning Data
- Training a Logistic Regression Model
- Improving Model Performance using Normalization
- Training a Random Forest Classification Model
- Oversampling Training Data using SMOTE
- Configuring Search Space for Hyperparameter Tuning
- Performing Hyperparameter Tuning
- Training an XGBoost Classification Model
- Course Summary
Low-code ML with KNIME: Building Clustering Models
Course: 1 Hour, 4 Minutes
- Course Overview
- Clustering Models
- Reading the Classification Dataset
- Imputing Missing Values and Checking Correlations
- Standardizing Data and Removing Outliers
- Performing K-means Clustering
- Visualizing Cluster Details
- Applying PCA and Performing 3D Visualization
- Finding the Optimal Number of Clusters
- Course Summary
Low-code ML with KNIME: Performing Time Series & Market Basket Analysis
Course: 1 Hour, 26 Minutes
- Course Overview
- Time Series Analysis
- Loading Data and Converting Date Types
- Computing and Visualizing Moving Averages
- Visualizing Data Quarterly and Monthly
- Decomposing Time Series Signals
- Inspecting and Removing Seasonality
- Fitting an ARIMA (1, 1, 1) Model
- Loading and Preparing Data
- Association Rules Learning
- Performing Association Rule Learning
- Course Summary
Assessment:
- Final Exam: Low-code Machine Learning with KNIME
Track 2: No-code Machine Learning with RapidMiner
In this track, the focus will be on no-code ML with RapidMiner. RapidMiner is a data science platform
designed for enterprises that analyses the collective impact of organizations’ employees, expertise, and
data. Rapid Miner's data science platform supports many analytics users across a broad AI lifecycle.
Courses:
No-code ML with RapidMiner: Getting Started with RapidMiner
Course: 46 Minutes
- Course Overview
- RapidMiner Features
- Supervised vs. Unsupervised Learning
- Reviewing the RapidMiner Website and Documentation
- Installing RapidMiner on macOS and Windows
- Exploring RapidMiner Studio
- Course Summary
No-code ML with RapidMiner: Performing Regression Analysis
Course: 1 Hour, 58 Minutes
- Course Overview
- Overview of Regression
- Loading and Summarizing Data with RapidMiner
- Computing Quality Measures and Statistical Summaries
- Visualizing Data with Univariate Visualizations
- Using Bivariate and Multivariate Visualizations
- Using Turbo Prep for Automated Data Preparation
- Using Auto Model for Model Training and Evaluation
- Cleaning Data and Converting Types
- Computing and Filtering Correlated Attributes
- Creating Subprocesses and Partitioning Data
- Selecting Attributes and One-hot Encoding
- Training a Linear Regression Model
- Comparing Performance for Multiple Models
- Tuning Random Forest Hyperparameters
- Course Summary
No-code ML with RapidMiner: Building & Using Classification Models
Course: 1 Hour, 20 Minutes
- Course Overview
- Overview of Classification
- Loading and Summarizing Data
- Assigning Roles and Removing Useless Attributes
- Preparing Data using Turbo Prep
- Building Models using Auto Model
- Treating Missing Values and Removing Duplicate Rows
- Training and Evaluating a Logistic Regression Model
- Training and Evaluating Multiple Classification Models
- Deploying a Model Locally
- Course Summary
No-code ML with RapidMiner: Performing Clustering Analysis
Course: 1 Hour, 1 Minute
- Course Overview
- Overview of Clustering
- Loading and Visualizing Data
- Performing Clustering using Turbo Prep and Auto Model
- Preparing Data for Clustering
- Performing and Evaluating K-means Clustering
- Visualizing Clusters using Principal Components
- Hyperparameter Tuning for Optimal Number of Clusters
- Course Summary
No-code ML with RapidMiner: Time-series Forecasting & Market Basket Analysis
Course: 1 Hour, 43 Minutes
- Course Overview
- Overview of Clustering
- Loading and Visualizing Data
- Performing Clustering using Turbo Prep and Auto Model
- Preparing Data for Clustering
- Performing and Evaluating K-means Clustering
- Visualizing Clusters using Principal Components
- Hyperparameter Tuning for Optimal Number of Clusters
- Course Summary
Assessment:
- Final Exam: No-code Machine Learning with RapidMiner
Track 3: Machine Learning Using SQL with BigQuery ML
In this track, the focus will be on machine learning with BigQuery ML. BigQuery is Google's fully managed, serverless data warehouse that enables scalable analysis over petabytes of data. It is a Platform as a Service (PaaS) that supports querying using a dialect of SQL.
Courses:
Machine Learning with BigQuery ML: Building Regression Models
Course: 2 Hours, 4 Minutes
- Course Overview
- BigQuery ML Introduction
- Supervised and Unsupervised Machine Learning (ML)
- Creating a Google Cloud Platform (GCP) Account and Accessing BigQuery
- Regression Model Introduction
- Creating a Dataset Table and Loading Data
- Exploring and Visualizing Data with Looker Studio
- Processing Data with DataPrep - I
- Processing Data with DataPrep - II
- Training and Evaluating a Linear Regression Model
- Viewing and Evaluating and ML Model
- Training and Evaluating a Boosted Tree Regression Model
- Training and Evaluating a Random Forest Model
- Course Summary
Machine Learning with BigQuery ML: Building Classification Models
Course: 1 Hour, 47 Minutes
- Course Overview
- BigQuery ML Introduction
- Supervised and Unsupervised Machine Learning (ML)
- Creating a Google Cloud Platform (GCP) Account and Accessing BigQuery
- Regression Model Introduction
- Creating a Dataset Table and Loading Data
- Exploring and Visualizing Data with Looker Studio
- Processing Data with DataPrep - I
- Processing Data with DataPrep - II
- Training and Evaluating a Linear Regression Model
- Viewing and Evaluating and ML Model
- Training and Evaluating a Boosted Tree Regression Model
- Training and Evaluating a Random Forest Model
- Course Summary
Machine Learning with BigQuery ML: Building Unsupervised Models
Course: 1 Hour, 41 Minutes
- Course Overview
- BigQuery ML Introduction
- Supervised and Unsupervised Machine Learning (ML)
- Creating a Google Cloud Platform (GCP) Account and Accessing BigQuery
- Regression Model Introduction
- Creating a Dataset Table and Loading Data
- Exploring and Visualizing Data with Looker Studio
- Processing Data with DataPrep - I
- Processing Data with DataPrep - II
- Training and Evaluating a Linear Regression Model
- Viewing and Evaluating and ML Model
- Training and Evaluating a Boosted Tree Regression Model
- Training and Evaluating a Random Forest Model
- Course Summary
Machine Learning with BigQuery ML: Training Time Series Forecasting Models
Course: 57 Minutes
- Course Overview
- Time Series Analysis Introduction
- Loading and Visualizing Time Series Data
- Exploring and Understanding Data
- Fitting an ARIMA Model
- Using Windowing for Trend Smoothing
- Performing Multiple Time Series Forecasting
- Course Summary
Assessment:
- Final Exam: Machine Learning Using SQL with BigQuery ML
Taal | Engels |
---|---|
Kwalificaties van de Instructeur | Gecertificeerd |
Cursusformaat en Lengte | Lesvideo's met ondertiteling, interactieve elementen en opdrachten en testen |
Lesduur | 20:13 uur |
Assesments | De assessment test uw kennis en toepassingsvaardigheden van de onderwerpen uit het leertraject. Deze is 365 dagen beschikbaar na activering. |
Online Virtuele labs | Ontvang 12 maanden toegang tot virtuele labs die overeenkomen met de traditionele cursusconfiguratie. Actief voor 365 dagen na activering, beschikbaarheid varieert per Training. |
Online mentor | U heeft 24/7 toegang tot een online mentor voor al uw specifieke technische vragen over het studieonderwerp. De online mentor is 365 dagen beschikbaar na activering, afhankelijk van de gekozen Learning Kit. |
Voortgangsbewaking | Ja |
Toegang tot Materiaal | 365 dagen |
Technische Vereisten | Computer of mobiel apparaat, Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox, Safari of Edge. |
Support of Ondersteuning | Helpdesk en online kennisbank 24/7 |
Certificering | Certificaat van deelname in PDF formaat |
Prijs en Kosten | Cursusprijs zonder extra kosten |
Annuleringsbeleid en Geld-Terug-Garantie | Wij beoordelen dit per situatie |
Award Winning E-learning | Ja |
Tip! | Zorg voor een rustige leeromgeving, tijd en motivatie, audioapparatuur zoals een koptelefoon of luidsprekers voor audio, accountinformatie zoals inloggegevens voor toegang tot het e-learning platform. |
Er zijn nog geen reviews geschreven over dit product.
OEM Office Elearning Menu Genomineerd voor 'Beste Opleider van Nederland'
OEM Office Elearning Menu is trots genomineerd te zijn voor de titel 'Beste Opleider van Nederland' door Springest, een onderdeel van Archipel. Deze erkenning bevestigt onze kwaliteit en toewijding. Hartelijk dank aan al onze cursisten.
Beoordelingen
Er zijn nog geen reviews geschreven over dit product.